User Tools

Site Tools

blog:2024-10-18-003



2024-10-18 Share: EE-464 Statics Power Conversion-II other PWM Techniques

Local Backup

  • <!DOCTYPE html>
    <html>
      <head>
        <title>EE464-Static Power Conversion-II</title>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
        <style type="text/css">
          @import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
          @import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
    
          body { font-family: 'Droid Serif'; }
          h1, h2, h3 {
            font-family: 'Yanone Kaffeesatz';
            font-weight: normal;
          }
          .remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
        </style>
      </head>
      <body>
        <textarea id="source">
    
    class: center, middle
    
    # EE-464 STATIC POWER CONVERSION-II
    
    # Other PWM Techniques
    
    ## Ozan Keysan
    
    ## [keysan.me](http://keysan.me)
    
    ### Office: C-113 <span class="meta">&#8226;</span> Tel: 210 7586
    
    ---
    
    # Hysteresis (Bang-Bang) PWM
    --
    
    ## You already implemented in the first semester
    
    <img src="./images/ee464/hysteresis_pwm.png" alt="Drawing" style="width: 600px;">
    
    ---
    
    # Hysteresis (Bang-Bang) PWM
    
    ### If your current is higher than your reference, reduce the current (switch off), if not increase the current (Switch ON)
    
    <img src="./images/ee464/hysteresis_pwm.png" alt="Drawing" style="width: 600px;">
    
    ---
    
    # Hysteresis (Bang-Bang) PWM
    
    ### For an inverter, just change your reference current to a sinusoidal waveform instead of a constant reference.
    
    <img src="./images/ee464/hysteresis_pwm2.png" alt="Drawing" style="width: 500px;">
    
    ---
    
    # Hysteresis (Bang-Bang) PWM
    --
    
    - ## The switching frequency is varying
    --
    
    - ## Difficult to design filter (because of varying fs)
    --
    
    - ## Can induce side-band harmonics
    --
    
    - ## Simple control and implementation
    
    ---
    
    # Hysteresis (Bang-Bang) PWM
    
    
    <img src="https://www.researchgate.net/profile/Michal_Knapczyk/publication/228659032/figure/fig3/AS:393882949963776@1470920421181/The-idea-and-control-signals-of-Hysteresis-Band-PWM.png" alt="Drawing" style="width: 550px;">
    
    ---
    # Field Oriented Control (FOC)
    --
    
    <img src="https://www.roboteq.com/images/article-images/how-to/image014.png" alt="Drawing" style="width: 550px;">
    
    - ### [What is FOC?](https://www.youtube.com/watch?v=Nhy6g9wGHow)
    - ### [Field oriented Control of PM Motors](https://www.youtube.com/watch?v=cdiZUszYLiA)
    ---
    
    ## How to aim to a moving target?
    --
    
    <img src="https://cdn.shopify.com/s/files/1/0264/5540/8674/files/carrot_and_donkey_large.jpg" alt="Drawing" style="width: 600px;">
    
    
    ---
    # A Few Useful Mathematical Tools
    --
    
    - ## Clarke Transformation
    - ## Park Transformation
    
    
    ---
    # [Clarke](https://en.wikipedia.org/wiki/Edith_Clarke) Transformation
    ## (a-b-c) to \\(\alpha \beta \\) Transformation
    
    ## From three-phase to two orthogonal phase transformation
    --
    
    ### Main Idea: In a balanced three-phase system, \\(I_a + I_b + I_c =0\\)  so there is redundant information and system can be reduced to two variables.
    
    ---
    ##How do you define the resultant (black) phasor?
    
    
    <img src="./images/rotating_mmf_phasor2.gif" alt="Drawing" style="width: 800px;">
    
    ---
    # Clarke Transformation
    
    <img src="https://www.keil.com/pack/doc/CMSIS/DSP/html/clarke.gif" alt="Drawing" style="width: 600px;"/>
    
    ---
    # Clarke Transformation
    
    <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36e05ba56ec15de753eb9f3c60983bc874e31370" alt="Drawing" style="width: 750px;"/>
    ---
    # Park Transformation
    ## (or D-Q Transformation)
    
    ---
    # Park Transformation in Space
    
    <iframe width="700" height="400" src="https://www.youtube-nocookie.com/embed/c4tPQYNpW9k" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
    
    
    ### i.e. [Interstellar - Docking Scene](https://www.youtube.com/watch?v=c4tPQYNpW9k)
    
    ---
    # Park Transformation
    --
    
    ## From rotating frame to stationary frame
    --
    
    ## Instead of dealing with sinusoidal signals, just  use the magnitudes.
    --
    
    ## When re-constructing signals use the rotor position information
    
    
    
    ---
    # Park Transformation
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/58664f0f2994ca78b5145f29/1483099927549/?format=750w" alt="Drawing" style="width: 750px;"/>
    
    ---
    # Park Transformation
    --
    
    <img src="./images/ee462/park_transform.png" alt="Drawing" style="width: 400px;"/>
    --
    
    ## \\(I\_d = I\_\alpha  cos(\theta) + I\_\beta sin (\theta)\\)
    --
    
    ## \\(I\_q = I\_\beta  cos(\theta) - I\_\alpha sin (\theta)\\)
    --
    
    
    ---
    ## Reference Frames
    
    <img src="./images/ee462/reference_frames.png" alt="Drawing" style="width: 750px;"/>
    ---
    ## Clarke and Park Transformations
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/5866535e414fb5c4d35ed4cb/1483101083243/ClarkePark_Animation?format=500w" alt="Drawing" style="width: 500px;"/>
    ---
    # Torque and Flux Control
    
    # Id: Proportional to flux in the air-gap
    
    
    # Iq: Proportional to torque generated
    
    
    ---
    # Inverse Transforms
    --
    
    ## Required to apply reference voltage and current waveforms (sinusoidals)
    --
    
    - ## Inverse Park Transform
    - ## Inverse Clarke Transform
    
    
    ---
    # Inverse Park Transform
    --
    
    ## From rotation frame to stationary frame
    --
    
    
    ## \\(I\_\alpha = I\_d  cos(\theta) - I\_q sin (\theta)\\)
    --
    
    ## \\(I\_\beta = I\_q  cos(\theta) + I\_d sin (\theta)\\)
    
    ---
    
    ## Inverse Clarke Transform
    
    ### From two-axis orthogonal plane to 3-phase stationary frame.
    
    <img src="http://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/171/3750._F764D653_.JPG" alt="Drawing" style="width: 500px;"/>
    
    ---
    ## Whole Workflow
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/58c88acd579fb3efb64797c9/1489537751460/?format=1000w" alt="Drawing" style="width: 750px;"/>
    
    <img src="./images/ee464/foc_workflow.png" alt="Drawing" style="width: 600px;"/>
    
    ---
    # Classical Vector Control Diagram
    
    <img src="https://www.ednasia.com/wp-content/uploads/sites/3/2021/07/FOC2_photos_v2_x2_colored-e1624401752113.png" alt="Drawing" style="width: 700px;"/>
    
    ---
    # Vector Control in PMSM
    
    <img src="http://www.mdpi.com/sensors/sensors-17-00973/article_deploy/html/images/sensors-17-00973-g007.png" alt="Drawing" style="width: 750px;"/>
    
    ---
    # Vector Control in Induction Motors
    
    
    <img src="https://in.mathworks.com/help/sps/powersys/ug/electric_drives223.gif" alt="Drawing" style="width: 600px;"/>
    ---
    # Summary
    
    <img src="./images/ee464/donkey.png" alt="Drawing" style="width: 600px;"/>
    
    ---
    
    # Further Reading
    
    ### [Vector Control for Dummies](https://www.switchcraft.org/learning/2016/12/16/vector-control-for-dummies)
    
    ### [What is Field Oriented Control?](https://www.eetimes.com/document.asp?doc_id=1279321)
    
    ### [Field Oriented Control](http://mycourses.aalto.fi/pluginfile.php/1055633/mod_resource/content/12/Lecture10.pdf)
    
    ### [Field Oriented Control of AC Motors](http://www.ti.com/lit/an/bpra073/bpra073.pdf)
    
    ### [Sensorless PMSM Field Oriented Control](http://cache.nxp.com/assets/documents/data/en/reference-manuals/DRM148.pdf)
    
    ### [Space Vector PWM](https://www.switchcraft.org/learning/2017/3/15/space-vector-pwm-intro)
    ---
    
    # 3-Phase Two-Level Inverter
    --
    
    <img src="./images/ee464/two_level_vsi.png" alt="Drawing" style="width: 800px;">
    
    ### Anti-parallel diodes are not shown.
    
    ---
    
    # 3-Phase Two-Level Inverter
    
    <img src="./images/ee464/two_level_vsi_simple.png" alt="Drawing" style="width: 800px;">
    
    ## Each leg has two positions: 
    --
    top switch closed (1)
    
    ---
    
    # 3-Phase Two-Level Inverter
    
    <img src="./images/ee464/two_level_vsi_simple.png" alt="Drawing" style="width: 800px;">
    
    ## Each leg has two positions: 
    --
    bottom switch closed (0)
    
    ---
    
    # [Voltage Vectors](https://www.switchcraft.org/learning/2017/3/15/space-vector-pwm-intro)
    --
    
    <img src="./images/ee464/voltage_vectors.png" alt="Drawing" style="width: 600px;">
    
    
    ---
    
    ### 000 - \\(v_0\\) (zero vector)
    ### 001 - \\(v_1\\) (Phase +U)
    ### 010 - \\(v_2\\) (Phase +V)
    ### 011 - \\(v_3\\) (Phase -W)
    ### 100 - \\(v_4\\) (Phase +W)
    ### 101 - \\(v_5\\) (Phase -V)
    ### 110 - \\(v_6\\) (Phase -U)
    ### 111 - \\(v_7\\) (zero vector)
    
    ---
    # Voltage Vectors: V0
    
    <img src="./images/ee464/v0.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V1
    
    <img src="./images/ee464/v1.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V2
    
    <img src="./images/ee464/v2.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V3
    
    <img src="./images/ee464/v3.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V4
    
    <img src="./images/ee464/v4.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V5
    
    <img src="./images/ee464/v5.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V6
    
    <img src="./images/ee464/v6.png" alt="Drawing" style="width: 750px;">
    
    ---
    # Voltage Vectors: V7
    
    <img src="./images/ee464/v7.png" alt="Drawing" style="width: 750px;">
    
    ---
    
    # Square Wave Operation
    
    
    
    <img src="https://media.giphy.com/media/aFdKsSmSHbLtC/giphy.gif" alt="Drawing" style="width: 800px;">
    
    
    ### [BLDC Drive with square wave](https://www.youtube.com/watch?v=IiY01xIKg28)
    
    ---
    
    ## What about the vectors in between?
    --
    
    <img src="./images/rotating_mmf_sine.gif" alt="Drawing" style="width: 750px;">
    
    ---
    
    ## What about the vectors in between?
    
    <img src="./images/rotating_mmf_phasor.gif" alt="Drawing" style="width: 600px;">
    
    
    ---
    
    ## What about the vectors in between?
    
    
    <img src="./images/rotating_mmf_phasor2.gif" alt="Drawing" style="width: 800px;">
    
    ---
    # Voltage Synthesizing
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/58fea6c8ebbd1a25ce89c905/1494287982183/Basic-Vectors-with-reference.png?format=500w" alt="Drawing" style="width: 500px;"/>
    ---
    # Voltage Synthesizing
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/58fea923197aea4f7f28f61a/58fea9286a49632401d63e94/1493084598485/SVPWM-1.png?format=1000w" alt="Drawing" style="width: 700px;"/>
    ---
    # PWM Generation
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/59110ff0ebbd1a1c7143886d/1494290426838/?format=1000w" alt="Drawing" style="width: 700px;"/>
    ---
    # PWM Generation
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/59111028c534a5947d523098/1494290481944/?format=1000w" alt="Drawing" style="width: 550px;"/>
    
    ### Switching Sequence: 000-001-011-111
    ---
    # PWM Generation
    
    ## Switching Sequence:
    
    - ## Zero Vector (000)
    --
    
    - ## Basic Vector (i.e. 001)
    --
    
    - ## Basic Vector (i.e. 011)
    --
    
    - ## Zero Vector (i.e. 111)
    --
    
    ## Only one switch position is changed at each step!
    
    ---
    # PWM Generation
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/58feacf5d482e9da38497463/1493085606567/?format=1000w" alt="Drawing" style="width: 700px;"/>
    ---
    
    ## SPWM vs SVPWM
    --
    
    <img src="./images/ee464/spwm_svpwm.png" alt="Drawing" style="width: 450px;">
    
    #### Phase Voltages
    ---
    
    
    ## SPWM vs SVPWM
    --
    
    - ## Space Vector PWM generates less harmonic distortion
    --
    
    - ##  Space Vector PWM utilizes input voltage more \\(1/2\\) vs \\(1/\sqrt{3}\\) (15% more)
    
    
    
    ---
    ### What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?
    --
    
    <img src="./images/ee464/spwm.jpg" alt="Drawing" style="width: 400px;"/>
    --
    
    ### \\(\hat{V}\_{p-n}=\dfrac{V\_{DC}}{2}\\)
    
    ---
    ### What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?
    --
    
    ### The inverter is connected to 400 \\(V\_{l-l}\\) grid with a 3-ph diode rectifier:
    
    <img src="./images/ee464/vfd.jpg" alt="Drawing" style="width: 500px;"/>
    --
    
    ### \\(V\_{DC}=\\)
    --
    \\(\dfrac{3\sqrt{2}}{\pi} V\_{l-l} \\)
    --
    \\(= 1.35 V\_{l-l} = 540 V\\)
    
    ---
    ### What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?
    --
    
    <img src="./images/ee464/vfd.jpg" alt="Drawing" style="width: 500px;"/>
    --
    
    ### Maximum motor phase voltage:
    --
    
    ### \\( V\_{phase-rms} = \dfrac{V\_{DC}}{2 \sqrt{2}}= 190 V\\)
    
    ### which is quite low for standard motors!
    
    ---
    ## How can you increase the output voltage beyond the DC-link voltage limit?
    --
    
    <img src="https://images3.memedroid.com/images/UPLOADED950/5bbcb4de55956.jpeg" alt="Drawing" style="width: 400px;"/>
    
    ---
    # Third Harmonic Injection (THIPWM)
    
    --
    
    ### A sinusoidal reference voltage output: 
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/590687ddff7c50866d9f4f1d/1493600229378/?format=1000w" alt="Drawing" style="width: 800px;"/>
    
    
    ---
    # Third Harmonic Injection (THIPWM)
    
    ### Assume you apply a waveform like that:
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/59068b67725e256add1f37f5/1493601135313/?format=1000w" alt="Drawing" style="width: 800px;"/>
    
    ### which composes of the fundamental and a third-harmonic component
    
    ---
    # Third Harmonic Injection (THIPWM)
    
    ### Such that \\(V = \dfrac{V\_{DC}}{2}\\) at \\(\pi/3\\)
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/59068e15e6f2e142b4adbe4f/1493601820281/?format=1000w" alt="Drawing" style="width: 800px;"/>
    ---
    
    # Third Harmonic Injection (THIPWM)
    
    ### What is the phase voltage?
    
    <img src="https://static1.squarespace.com/static/584729023e00bebf8abd6ba0/t/590691aed1758ec4d7664141/1493602742473/ThirdHarmonics.png?format=500w" alt="Drawing" style="width: 500px;"/>
    
    #### Third harmonic cancels itself (common-mode voltage), the potential of the neutral votlage is oscillating, but the winding doesn't see this change and observe a pure sinusoidal.
    
    
    ---
    # Third Harmonic Injection (THIPWM)
    
    ### What is the phase voltage?
    
    
    ### THIPWM: \\( V\_{phase-rms} = \dfrac{V\_{DC}}{ \sqrt{6}}= 220 V\\)
    
    --
    ### %15 higher than SPWM
    ###  ( \\( V\_{phase-rms} = \dfrac{V\_{DC}}{2 \sqrt{2}}= 190 V\\)) 
    
    ---
    # Third Harmonic Injection (THIPWM)
    
    <img src="./images/ee462/thipwm.gif" alt="Drawing" style="width: 800px;"/>
    
    ---
    ## How about SVPWM?
    --
    
    ### What is the phase voltage for one of the SVPWM vectors?
    --
    
    ### \\(\hat{V\_n} = \dfrac{2}{3}V\_{DC}\\)
    --
    
    ### What if two adjacent vectors are applied  for %50, %50?
    --
    
    ### \\(= \dfrac{2}{3}V\_{DC} \dfrac{\sqrt{3}}{2} = \dfrac{1}{\sqrt{3}}V\_{DC}\\) 
    
    ### Same with THIPWM: \\(V\_{ph,rms}=  \dfrac{1}{\sqrt{6}}V\_{DC} = 220 V\\)
    
    ---
    ## How about SVPWM?
    
    
    ### Magnitude comparison of SPWM and SVPWM
    
    <img src="./images/ee464/svpwm_locus.png" alt="Drawing" style="width: 500px;"/>
    
    ---
    
    ### Magnitude comparison of SPWM and SVPWM
    
    ### Space Vector (SVPWM)
    
    ### Max. \\(V\_{l-l,rms} = \sqrt{3} \dfrac{\frac{V\_{dc}}{\sqrt{3}}}{\sqrt{2}}\\)
    --
    \\(= \dfrac{V\_{dc}}{\sqrt{2}} = 0.707 V\_{dc}\\)
    
    --
    
    ### Sinusoidal (SPWM)
    --
    
    ### Max. \\(V\_{l-l,rms} = \sqrt{3} \dfrac{\frac{V\_{dc}}{2}}{\sqrt{2}}\\)
    --
    \\(= \dfrac{ \sqrt{3} V\_{dc}}{2\sqrt{2}} = 0.612 V\_{dc}\\)
    
    ### SVPWM is %15 higher than SPWM
    
    ---
    ## You can download this presentation from: [keysan.me/ee464](http://keysan.me/ee464)
    
    
        </textarea>
        <script src="https://remarkjs.com/downloads/remark-latest.min.js" type="text/javascript"></script>
        <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
        <script type="text/javascript">
          var slideshow = remark.create({countIncrementalSlides: false});
    
          // Setup MathJax
          MathJax.Hub.Config({
              tex2jax: {
              skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
              }
          });
          MathJax.Hub.Queue(function() {
              $(MathJax.Hub.getAllJax()).map(function(index, elem) {
                  return(elem.SourceElement());
              }).parent().addClass('has-jax');
          });
    
          MathJax.Hub.Configured();
        </script>
      </body>
    </html>
    

TAGS

  • 16 person(s) visited this page until now.

Permalink blog/2024-10-18-003.txt · Last modified: 2024/10/18 15:35 by jethro

oeffentlich