The new can Wake up flow

WUP The new bus wake up concept

Magnus-Maria Hell Infineon technologies

Current situation

- In the ISO 11898-5 the bus wake up behavior is described the first time
- In this specification a dominant level on the bus longer than 5µs is able to wake up the transceiver
- > This was not robust enough against noise and spikes for future needs
- A new wake behavior is specified in the new ISO 11898-2 (edition 2016)

ISO 11898-2 Wake up Pattern

ISO specification CAN activity filter time

Parameter	Min	Max	Unit	Condition
CAN activity filter time, long	0,5	5	μs	$1,2V \le Vdiff \le 3V$ -10,8V \le V _{CAN_H} \le 12,0V -12,0V \le V _{CAN_L} \le 10,8V

A dominant or recessive level shorter than 500 ns will be ignored

CAN_H

A dominant of recessive level longer than 5 μs will be detected

CAN_H

CAN_L

5000ns

State Ini:

- Bus recessive; no communication
- CAN activity dominant filter time detection unit is active
- Dominant levels on the bus shorter than 500(150)ns will be filter out
- Dominant levels on the bus longer than 5000(1800)ns will be detected as dominant condition
- If dominant condition is fulfilled Transceiver will jump to State 1

State 1:

- Communication on the bus
- CAN activity recessive filter time detection unit is active
- Recessive levels on the bus shorter than 500(150)ns will be filter out
- Recessive levels on the bus longer than 5000(1800)ns will be detected as recessive condition
- If recessive condition is fulfilled
 Transceiver will jump to State 2

State 2:

- Communication is running
- CAN activity dominant filter time detection unit is active
- Dominant levels on the bus shorter than 500(150)ns will be filter out
- Dominant levels on the bus longer than 5000(1800)ns will be detected as dominant condition
- If dominant condition is fulfilled Transceiver will jump to State 3
- Transceiver will be woken up and switch on the bus biasing and flags this event on RxD pin and/or INH pin.

State 3:

- Communication is running
- Transceiver is active
- Transceiver is in normal operation mode or low power mode bus biasing active
- If device change into low power mode with bus biasing active and there is no communication on the bus, the transceiver will change into state INI

Bus short:

- Short CANH to Vbat
- Permanent dominant level on the bus may occur
- CAN activity recessive filter time detection unit is active
- Permanent dominant level on the bus for a time longer than t_{wake}
 - -> the unit will jump to state Wait
- If the recessive condition is fulfilled longer than t_{Filter}
 - -> the unit will jump to state Ini
- This is implemented to reduce the current consumption in low power mode in case of a Short

- State Wait:
- Short CANH to vbatt
- Permanent dominant level on the bus
- CAN activity recessive filter time detection unit is active
- Recessive levels on the bus shorter than 500(150)ns will be filter out
- Recessive levels on the bus longer than 5000(1800)ns will be detected as recessive condition
- If the recessive condition is fulfilled longer than t_{Filter}
 - -> the unit will jump to state Ini

State 2:

- No communication on the bus
- CAN activity dominant filter time detection unit is active
- Dominant levels on the bus shorter than 500(150)ns will be filter out
- dominant levels on the bus longer than 5000(1800)ns will be detected as recessive condition
- If there is no communication on the bus (permanent recessive level) for a time longer than t_{wake}
 - -> the unit will jump to state Ini
- This is implemented to guarantee a robustness against spikes
- Normally a dominant level should be detected faster than t_{wake}

Frame format analyses (1)

CBFF (Classical base frame format)

> RTR, IDE, FDF are dominant

WUP can be realized with

> RTR, IDE, FDF (1. Frame) = dominant => dominant condition fulfilled

EOF = recessive => recessive condition fulfilled

RTR, IDE, FDF (2nd Frame) = dominant => dominant condition fulfilled

Frame format analyses (2)

CEFF (Classical extended frame format)

> RTR, IDE, FDF are dominant

WUP can be realized with

RTR, FDF, r0 (1.Frame) = dominant => dominant condition fulfilled

EOF = recessive => recessive condition fulfilled

> RTR, FDF, r0 (2nd Frame) = dominant => dominant condition fulfilled

Frame format analyses (3)

FBFF (CAN FD base frame format)

RRS, IDE are dominant

WUP cannot be guaranteed for bit rate higher than 400kBit/s (Bit time = $2.5\mu s$)

> => The CAN activity filter time has to be reduced

Frame format analyses (3)

FEFF (CAN FD extended frame format)

Only one dominant bit guaranteed RRS, or res, od Identifier

WUP cannot be guaranteed for bit rate higher than 200kBit/s (Bit time = 5μ s)

> => The CAN activity filter time has to be reduced

ISO 11898-2 Wake up Pattern

New ISO specification for CAN activity filter time

Parameter	Min	Max	Unit	Condition
CAN activity filter time, long	0,5	5	μs	$1,2V \le Vdiff \le 3V$ -10,8V \le V _{CAN_H} \le 12,0V -12,0V \le V _{CAN_L} \le 10,8V
CAN activity filter time, short	0,15	1,8	μs	$1,2V \le Vdiff \le 3V$ -10,8V \le V _{CAN_H} \le 12,0V -12,0V \le V _{CAN_L} \le 10,8V

With the add parameter CAN activity filter time, short bit rates up to 500kBit/s can be used for bus (remote) wake up)

Parameter	Min Max		Unit
Wake up time, short	350	10000	μs

- Critical Scenario in CAN FD Frames:
 - dominant condition fulfilled in the RRS, FDF, res field only
 - Recessive condition fulfilled in the DLC (0111)
 - Dominant condition is not fulfilled in data phase due to high bit rate
 - Next Dominant condition fulfilled in the RRS, FDF, res field

- Longest distance between recessive condition and dominant condition
- CEFF min number of bits = 123; max number of bits = 152 @ 500kBit/s = 304µs
- 304 is close to 350µs min Wake up time=> Wake up time long is recommended

Add parameter t_{Wake_long}

Parameter	Min	Max	Unit
Wake up time, short	350	10000	μs
Wake up time, long	800	10000	μs

 $\,\,$ With $\,t_{Wake_long}^{}$ the new WUP mechanism is prepared for CAN_FD

Summary

The new WUP wake up mechanism to make sure a more reliable bus wake up mechanism

 $T_{\text{wake long}}$ and $t_{\text{filter short}}$ allows arbitration bit rates up to 500kBit/s

All parameters are specified in the new ISO 11898-2 (ed 2016)

Part of your life. Part of tomorrow.

